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This article presents an approach for simultaneously estimating farmers’ decisions to accept incentive
payments in return for adopting a bundle of environmentally benign best management practices.
Using the results of a multinomial probit analysis of surveys of over 1,000 farmers facing five adoption
decisions in a voluntary program, we show how the farmers’ perceptions of the desirability of various
bundles change with the offer amounts and with which practices are offered in the bundle. We also
demonstrate an estimator for the mean minimum willingness to accept for the adoption of a practice
conditional on the cost share offers for other practices.
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Agri-environmental payment programs play
an important part in improving the environ-
mental performance of agriculture (Claassen
and Horan, Batie, Lynch and Smith, Smith;
Feather and Cooper, Claassen et al.). Federal-
level interest in developing these programs is
currently strong. For example, the 2002 Farm
Act calls for a five fold increase in funding
for the USDA’s Environmental Quality Incen-
tives Program (EQIP). This article focuses on
voluntary programs designed along the lines of
the EQIP, which provides incentive payments
to encourage producers to adopt environ-
mentally benign land management practices
such as nutrient management, manure man-
agement, and integrated pest management.

For policy-making purposes, it would be use-
ful to know the sensitivity of the producer’s
decision to enroll in response to a schedule
of potential incentive payments and to which
practices are bundled together. Such informa-
tion can be used to assess the costs of encourag-
ing farmers to try various environmentally be-
nign management practices (commonly known
as best management practices, or BMPs).

EQIP offers the farmer a suite of BMPs
to choose from. Existing published research
(Cooper and Keim) modeled the probability
of farmer adoption of BMPs as a function of
the incentive payment, with each practice be-
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ing modeled independently in a bivariate pro-
bit analysis of actual adoption and hypotheti-
cal adoption. Khanna also conducts a bivariate
probit analysis of technology adoption, but be-
tween two technologies at a time.

Logically, there is no reason to believe that
the farmer’s decision to adopt each of these
practices should be treated independently;
these BMPs should be considered as a bun-
dle of interrelated practices (Amacher and
Feather). If each adoption decision is treated
independently in estimation, then valuable
economic information may be lost. If the avail-
able set of BMP options does indeed influ-
ence the farmer’s decision as to which prac-
tices to adopt, then the adoption decision
follows a multivariate distribution. The multi-
nomial probit (MNP) model, which makes use
of the multivariate normal (MVN) distribu-
tion, is the appropriate econometric tool for
modeling multiple adoption decisions in a joint
manner such that the correlations of the error
terms across the practices are nonzero.

In the numerical illustration, a dataset
drawn from surveys of over 1,000 farmers in
four U.S. regions is used to simultaneously
model five discrete choices in an EQIP-like
cost-sharing program. This program offers cost
shares only for practices that the farmer does
not currently use. In the model presented here,
farmers who do not use a desired practice are
asked whether they would accept a hypothet-
ical cost share offer to adopt the practice, and
each hypothetical adoption decision is treated
jointly. By modeling the decision-making
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process jointly across the offered BMPs, the re-
sulting estimate of the correlations across the
decisions allows us to examine those BMPs
that the farmers consider to be bundles, and
to calculate conditional probabilities and sum-
mary statistics. This information can be of
policy significance in the design of the type
of agri-environmental payment program dis-
cussed here. Before turning to the economet-
ric model and then to the numerical illustration
of the approach, in the next section we provide
the theoretical basis for addressing the incen-
tive payment program as a bundle of technolo-
gies to be adopted.

The Theoretical Model

Consider a farmer who is faced with a set of
decisions on what combination of j = 1, . . . , J
BMPs to choose from under a incentive pay-
ment program. The farmer’s discrete decision
to accept incentive payments in exchange for
adopting the BMPs can be modeled using the
random utility model (RUM) approach (e.g.
Hanemann).1 From the utility-theoretic stand-
point, a farmer is willing to accept a cost share
Aj per acre to switch to a new BMP j if the ob-
servable portion of the farmer’s indirect utility
with the new practice and incentive payment,
V1j(s, Aj, ε1; �), is at least as great as at the ini-
tial state, V0(s, ε0; �), i.e., the farmer’s decision
to adopt the practice can be expressed as V1j ≥
V0, where 0 is the base state, 1 is the state with
the green practice j adopted, s is a vector of ex-
planatory variables, the error term ε is an inde-
pendently and identically distributed random
variable with zero mean, and � is a vector of the
parameters of the functions. Say that Cj is the
cost share value that solves V1j(s, Cj, ε1; �) =
V0(s, ε0; �), then Cj = C(s, ε; �) is the mini-
mum willingness to accept (WTA) for adopt-
ing green practice j.

In practice, V1 and V0 are generally not sep-
arately identifiable, but their difference (�V =
V1 − V0) is. This difference can be expressed
in a probabilistic framework as

Pr{response is “yes”}
= Pr{A j ≥ C j (·)} = Pr{V1 ≥ V0}
= Pr{�V ≥ 0}

(1)

1 In theory, the farmer’s utility maximization process is a combi-
nation of the discrete decision to adopt as well as the continuous
decision of how many acres to adopt the BMPs on. We address only
on the former, which was the main focus of our survey questions.

and hence the parameters necessary to calcu-
late Cj can be estimated through maximum
likelihood. The probability of farmer adoption
at Cj is Fε[�V(Cj)], where Fε is a cumula-
tive density function (CDF). Given that �1j
and �0, as well as any nonfinancial motiva-
tions for adoption, are unlikely to be known
to the researcher, survey approaches (such as
those that explicitly ask the farmer whether
she would adopt for a given incentive payment
A) are needed to estimate the parameters of
Fε (Cooper, Cooper and Keim, Khanna). Now
suppose that three BMPs can be cost-shared,
and suppose that the farmer answers “no” to
cost share offers for practices 1 and 3, but “yes”
to practice 2. Extending equation (1) and de-
noting the joint density by gC,

Pr{“no” to 1 and 3, “yes” to 2}
= Pr{C1 ≥ A1, C2 ≤ A2, and C3 ≥ A3}

=
∫ ∞

A1

∫ A2

0

∫ ∞

A3

gC (C1, C2, C3) dc1 dc2 dc3.

(2)

According to Hanemann and Kanninen, but
applied to the WTA case, let GC(C1, . . . , CJ)
be the joint distribution function associ-
ated with the density gC(C1, . . . , CJ), and let
G(j)(C1, . . . , CJ) denote the partial deriva-
tive of this joint distribution with re-
spect to the jth argument: G( j)(C1, . . . , CJ ) ≡
∂GC (C1, . . . , CJ )/∂C j . Then, an equivalent
way to express equation (2) is (Hanemann and
Kanninen)

F2 = Pr{“no” to 1 and 3, “yes” to 2}
= Pr{C1 ≥ A1, C2 ≤ A2, and C3 ≥ A3}

=
∫ A2

0
G(2)(A1, C2, A3) dc2.

(3)

Assuming the �V(Cj) are distributed nor-
mally but are correlated through the error
terms, then the multivariate distribution needs
to account for the correlations, where the
(J × 1) vector �V is distributed as �V ∼
F(�1, �2, �3, . . . , �J ; �), where � is the
(J × J) correlation matrix between the prac-
tices. The next section presents the empirical
model for estimating the parameters of such a
distribution.

Econometric Model

Assume that N farmers choose among a set of
J practices. The farmer’s RUM associated with
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the incentive payment offer to adopt the BMP
is 2

�Vij = x′
ij� j + εij

( j = 1, . . . , J ; i = 1, . . . , N)

(4)

where xij is a vector of explanatory variables
for choice j for farmer i and �j the vector
of coefficients associated with choice j. The
MNP model assumes that the correlations be-
tween the practices occur through the error
terms in the equations, which are distributed
as εi ≡ (εi1, . . . , εiJ)′ ∼ IIDN(0, �), � = ��ij�.
The MNP log-likelihood function to be esti-
mated is an expanded version of the bivariate
model (Greene):

L(�, �) =
N∑

i=1

log F(�i , �
∗)(5)

where �i ≡ (qi1 ∗ �Vi1, . . . , qiJ ∗ �ViJ)′ and,
for the model for current nonusers only,
xij = {xij1 ∗ rij, . . . , xijP ∗ rij}, where dummy va-
riable rij = 1 if i is a current nonuser of j, and 0
otherwise, p = 1, . . . , P variables, and

qi j =
{ 1 if farmer i adopts practice j

−1 if farmer i does not
adopt practice j

and �∗ = Ti�Ti, where Ti is a J × J diagonal
matrix with Ti ≡ (qi1, . . . , qiJ)′ on the diagonal,
and where the unrestricted J × J covariance
matrix has (J − 1) × J free elements (after
imposing symmetry conditions).

Leaving out the subscript i, the multivariate
normal density function in equation (5) is

F( ⇀
w, �∗) = 1√|�∗|(2�)J

∫ w1

−∞

∫ w2

−∞
· · ·

×
∫ wJ

−∞
e− 1

2 �′�∗−1� d�

(6)

where wj = (�j − �j)/�j, �j = 1, �j = 0 .
As noted earlier, the computational in-

tractability of the MVN density in equation
(6) accounts for the fact that it is rarely used
in dimensions higher than J = 2 (bivariate),

2 A full MNP model would have variables in the RUMs in equa-
tion (4) whose values vary across the J choices. While such variables
are possible for some datasets, such as those used in recreational
site choice, such variables are unlikely to be available to researchers
modeling the farmer’s technology adoption process. However, con-
vergence of a MNP model with such variables generally requires
restrictions on the correlation matrix, such as normalizing it along
one row.

or increasingly, J = 3 (trivariate). The tra-
ditional numerical quadrature methods for
calculating F(·) tend not only to be unaccept-
ably slow in more than three or four dimen-
sions, they also suffer from serious shortcom-
ing in numerical accuracy as J increases (e.g.,
Horowitz, Sparmon, and Daganzo). An alter-
native to the quadrature methods, namely the
Monte Carlo methods, is necessary to estimate
this CDF. Simulation of standard normal vari-
ables is a well-studied problem (see Stern for
an overview of simulation-based methods), al-
though applications in the applied economics
area exist but are rare (e.g., the trivariate
model in Dorfman). To some extent this state is
due to desktop computers only recently having
the computational speed to perform this anal-
ysis and to a lack of available software. For
this article, the GHK (Geweke–Hajivassiliou–
Kean) importance sampling technique (Stern)
and a similar technique proposed by Genz
were both tried and they gave similar
results.

Since the Monte Carlo simulator can ap-
proximate the probabilities of the MVN den-
sity in equation (6) to any desired degree of
accuracy, the corresponding simulated maxi-
mum likelihood estimate (SMLE) based on
the simulated MVN can approximate the
MLE estimator (Hajivassiliou, McFadden, and
Ruud). For the results to be consistent, the
number of simulations must increase with
the sample size at a sufficiently rapid rate
(Newey and McFadden). One hundred repe-
titions are used here (as suggested by Geweke,
Kean, and Runkle for their simulated MNP
model).

A potential drawback of the econometric
model presented above (or any other mul-
tivariate probit applications that the authors
are aware of) is that it could potentially be
subject to biases associated with incorrect
specifications of the functional form of the
RUM and of the normality assumption. We ex-
tend Creel and Loomis’ semi-nonparametric
(SNP) distribution-free approach for the uni-
variate discrete choice case to our multivari-
ate discrete choice model. This approach uses
the Fourier functional form (e.g., Fenton and
Gallant) as a substitute for the parametric
functional form of the RUM in equation (4).
The Fourier functional form is one of the few
functional forms known to have Sobolev flexi-
bility, which means that the difference between
a function �V(x, �) and the true function f (x)
can be made arbitrarily small for any value of
x as the sample size becomes large (Gallant).
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Creel and Loomis’ specification of �V modi-
fied for the MNP model is:

�VF (xij, �kj)

= x′
ij� j +

M∑
m=1

L∑
l=1

(vlmj cos[lr′
mjs(xij)]

− wlmj sin[lr′
mjis(xij)])

(7)

where the p × 1 vector xij contains all argu-
ments of the utility difference model, k is the
number of coefficients in �j, which consists of
the �j, vlmj, and wlmj are the coefficients to be
estimated, M and L are positive integers, and
rmj is a p × 1 vector of positive and negative
integers that forms indices in the conditioning
variables and that determine which combina-
tions of variables in xij form each of the trans-
formed variables, and j = 1, . . . , J BMPs.3 The
integer m is the sum of the absolute value of
the elements in the multi-indexes in vector rm
and L is the order of the transformation, and
is basically the number of inner loop trans-
formations of xi (ignoring the j subscript for
clarity of exposition). For example, if xi con-
tains three variables and M = L = 1, then the
rm vectors are (1,0,0), (0,1,0), and (0,0,1), re-
sulting in k = 9 (not counting the constant).
The p × 1 function s(xi) prevents periodicity in
the model by rescaling xi so that it falls in the
range [0, 2� −0.000001] (Gallant). This rescal-
ing of each element in xi is achieved by sub-
tracting from each element in xi its minimum
value (from across the sample), then dividing
this difference by the maximum value (from
across the sample), and then multiplying the
resulting value by [2� −0.000001]. For exam-
ple, if bid is the only explanatory variable, then
rm is a (1 × 1) unit vector and max (M) equals
1. If furthermore, M = L and bid offer Aj has
more than three unique values, then

�V (A j , �k j ) = � j + 	j A j + 	jv cos s(A j )
+ 	wj sin s(A j ).

(8)

If a variable has only three unique values, then
only the v or w transformation may be per-
formed. In practice, the level of transforma-
tion in equation (8) generally adds sufficient
flexibility to the model. To apply this approach
to the multivariate discrete model, the �Vij =

3 In addition to appending x� to the Fourier series in equation
(7), Gallant suggests appending quadratic terms when modeling
nonperiodic functions. Our experiments suggest that inclusion of
the quadratic terms in the regressions had little impact on the WTA
estimates. Hence, we leave them out for the sake of efficiency.

x′
ij�j terms in the MLE in equation (5) are re-

placed with those in equation (8). The SNP
functional form for the RUM adds substan-
tial flexibility to the model, and if the assump-
tion of the normal distribution is inappropri-
ate, such an effect should be seen through
significant coefficients on the higher-ordered
terms, noting that the parametric model (equa-
tion (4)) is nested in the SNP model (equation
(7)). Of course, statistical differences between
the SNP and the parametric-based MNP ap-
proaches may be due to incorrect specification
of the functional form or the density function,
but these cannot be separably identified.

Numerical Illustration

The data used for the numerical illustration
are taken from a data collection and model-
ing effort undertaken jointly by the Natural
Resource Conservation Service (NRCS), the
Economic Research Service (ERS), the U.S.
Geological Survey (USGS), and the National
Agricultural Statistical Service (NASS).4 Data
on cropping and tillage practices and input
management were obtained from comprehen-
sive field and farm-level surveys of about 1,000
farmers apiece for cropping practices in each
of four critical watershed regions. None of the
respondents indicated that they were enrolled
in WQIP (the EQIP-like program in existence
at the time of the survey). Table 1 describes
the five BMPs that were addressed in the sur-
vey instrument. Table 2 presents the frequency
of occurrence of the actual adoption of var-
ious BMP combinations in the sample. The
choice of bundles is clearly nonrandom, as one
would expect. Of the thirty-two possible com-
binations (including the null set), over 92%
of the farmers are accounted for by eleven
combinations. However, table 2 tells us noth-
ing about what the socially optimal bundles
are; the farmer’s choice of bundle is largely
a business decision, while the socially optimal
choice balances economic and environmental
costs and benefits.

Here we focus on the hypothetical adoption
decision by current nonusers of the practice,
with the Appendix presenting the analysis of
the actual (current) adoption decision. In the
survey, current nonusers of each practice (i.e.,
those who said that they did not currently use
the practice) were asked if they would adopt

4 As the data are discussed in detail in Cooper and in Cooper
and Keim, for brevity and to avoid repetition, we do not discuss
the data in detail here.



980 November 2003 Amer. J. Agr. Econ.

Table 1. Descriptions of the Farm Management Practices Presented in the Survey Instrument

Conservation Tillage (CONTILL) Tillage system in which at least 30% of the soil surface is covered
by plant residue after planting to reduce soil erosion by water; or
where soil erosion by wind is the primary concern, at least 1,000
pounds per acre of flat small grain residue-equivalent are on the
surface during the critical erosion period.

Integrated Pest Management (IPM) Pest control strategy based on the determination of an economic
threshold that indicates when a pest population is approaching
the level at which control measures are necessary to prevent a
decline in net returns. This can include scouting, biological
controls and cultural controls.

Legume Crediting (LEGCR) Nutrient management practice involving the estimation of the
amount of nitrogen available for crops from previous legumes
(e.g. alfalfa, clover, cover crops, etc.) and reducing the
application rate of commercial fertilizers accordingly.

Manure Testing (MANTST) Nutrient management practice which accounts for the amount of
nutrients available for crops from applying livestock or poultry
manure and reducing the application rate of commercial
fertilizer accordingly.

Soil Moisture Testing (SMTST) Irrigation water management practice in which tensiometers or
water table monitoring wells are used to estimate the amount of
water available from subsurface sources.

Table 2. Frequency of Occurrence of Actual Adoption of Various BMP Combinations in the
Sample (“1” = BMP is Used; “0” = BMP is Not Used)

CONTILL IPM LEGCR MANTST SMTST Frequency (%)

1 0 0 0 0 36.66
0 0 0 0 0 15.32
1 0 1 0 0 9.41
1 1 0 0 0 8.92
1 1 1 0 0 7.37
0 1 0 0 0 3.78
1 0 0 0 1 3.30
1 1 1 1 0 2.33
0 0 1 0 0 1.94
1 1 1 0 1 1.94
1 0 1 1 0 1.36

Total use of each BMP in the sample (%)
74.88 29.78 27.74 7.57 9.70

Notes: Only bundles with a reported frequency of 1% or greater are listed above. The bundles above represent those reported by 92.33% of the farmers in the
sample. Sample size = 1,031. Only 0.87% of sample reported using all five practices.

the BMP with an incentive payment of $[X]
per acre, a value that varied across the respon-
dents in the range of $2 to $24. For any one re-
spondent, however, to avoid anchoring biases
across the responses, the offered bid was the
same for each practice. Each of the five adop-
tion questions was placed on the same page so
that the respondent was concurrently aware
of all five. As the bid variable (cost share) is
uncorrelated with any other variables by the
design of the survey instrument, it is the only
relevant variable for examining the relation-
ship between the bid and probability of ac-

ceptance and for calculating the mean bene-
fit for the sample (Mcfadden), with additional
explanatory variables serving largely to strat-
ify the sample. For brevity then, we present
the results for the regressions with just the bid
variable.5 The Appendix presents economet-
ric results that relate a number of explanatory
variables to the actual decision to adopt, i.e.,
the analysis of adoption where Aj = $0.

5 Results for the SNP model with multiple regressors are too
lengthy to present here, but are available upon request from the
authors.
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As only the adoption decision of current
nonusers of the BMPs is analyzed in the
main body of this article, the estimated prob-
abilities are conditional on nonadoption, i.e.,
Pr{Farmer accepts bid A in turn for adoption
of the BMP | farmer is not current user of the
BMP}. This conditional probability is appro-
priate to this article’s policy goal of examin-
ing the USDA’s Environmental Quality Incen-
tives Program (EQIP). This is because EQIP
offers cost shares only to current nonusers of
the BMPs. Hence, the policy-relevant density
function for EQIP is Pr{Farmer accepts bid A
in turn for adoption of the BMP | farmer is not
current user of the BMP}, and not the uncon-
ditional Pr{Farmer accepts bid A in turn for
adoption of the BMP}. In other words, concern
over potential sample selection bias in exam-
ining only current nonusers is eliminated if our
policy interest is EQIP. In fact, for the purposes
of EQIP, we are only interested in the subsam-
ple of farmers who do not currently use the
BMPs.

The likelihood function and maximization
routines were programmed by the author in
GAUSS.6 Regression results are presented in
table 3 (correlation coefficients are presented
in table A.3 in the Appendix). The second and
third columns in table 3 are the results using
the parametric RUM specification and the last
two columns represent the SNP RUM model
results. The “restricted” columns present the
results of the model where the off-diagonal
terms in the correlation matrix of the five prac-
tices are restricted to equal zero. In this case,
the estimated coefficients and standard errors
are equivalent to those from separate probit
regressions for each practice. The coefficient
of the offer amount (BID) is of the expected
sign and significant to at least the 10% level,
and for most cases, the 1% level, except for
those for CONTILL in the SNP models, per-
haps due to some collinearity in the case of
BID with the higher-order terms. In fact, the
bid offer for CONTILL was $2 per acre lower,
and hence, the bid range narrower, than for
the other practices (which all had the same bid
offers), as pretesting of the survey suggested
that farmers expected conservation tillage to
receive a lower cost share than the other prac-
tices. Note that the only two cases where one

6 The only commercially available program that the authors are
aware of that performs the MNP using the simulated normal is
an optional package in Limdep. However, the authors found that
modeling the data on the five BMPs with the commercially avail-
able software was too computationally burdensome to be practical.

of the higher-order terms is significant is that
on “cos s(BID)” and “sin s(BID)” in the re-
stricted case for the adoption of LEGCR and
SMTST, respectively.

As the restricted model (i.e., each adop-
tion function is independent of the other) is
nested within the unrestricted model for both
the parametric and SNP cases, a likelihood ra-
tio test, namely LR = −2(lnLr − lnLu), can
be used to test the null hypothesis that farm-
ers consider each BMP adoption decision as
an independent one. Given the log-likelihood
values at the bottom of table 3, this hypothesis
is not accepted for any reasonable level of sig-
nificance in either the parametric or SNP cases.
As the unrestricted RUM is nested within the
unrestricted SNP RUM, a likelihood ratio test
can be used to test the null hypothesis that
the BMPs are distributed normally with a lin-
ear RUM. This hypothesis cannot be accepted
either, but the critical value of 15.14 is much
lower than those comparing the restricted and
unrestricted models. In fact, a simple visual
comparison of the coefficients on BID between
the restricted (unrestricted) parametric and re-
stricted (unrestricted) SNP models indicates
no major differences.

The Appendix provides the results for the
MNP analysis of current users versus nonusers
of the BMPs. Two basic conclusions follow
from this analysis. One is that none of the avail-
able variables stand out as an important pre-
dictor of current use (the SNP specification
was not practical with this larger dataset).7
But most significant for this article is that
the restricted MNP model is rejected at any
reasonable level of significance, given that
the log-likelihood for the unrestricted MNP
model of −2176, and the likelihood value for
the (nested) restricted model (not shown) is
−2223. This result can be interpreted as empiri-
cal evidence that the correct decision was made
for the hypothetical survey questions to make
the respondent concurrently aware of each of
the possible BMPs.

For the analysis of hypothetical adoption,
the correlation coefficients between the prac-
tices are significant to at least the 1% level
as well, regardless of whether they are esti-
mated for the parametric or SNP regressions
(Appendix table A.3, second and third set of
numbers). The correlation coefficients for the

7 The decision on which variables to include in the regressions
for each of the practices was based on whether or not the variables
appear justified from a farm management standpoint.
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Table 3. Restricted and Unrestricted Multinomial Probit Regression Results (Parametric and
Semi-Nonparametric RUMs)

Coefficient Estimates
(Coefficient Estimates/Standard Error)

Parametric SNP

Practices Variables Restricted Unrestricted Restricted Unrestricted

CONTILL CONST −0.7815 −0.8199 −0.7783 −0.7520
−(4.252) −(5.75) −(2.445) −(2.962)

BID 0.0221 0.0187 0.0217 0.0150
(1.834) (1.838) (1.024) (0.834)

sin s(BID) 0.0217 0.0738
(.287) (1.427)

cos s(BID) 0.0106 0.0179
(0.105) (0.239)

IPM CONST −1.0979 −1.0729 −1.1157 −1.0971
−(10.61) −(12.11) −(7.488) −(8.11)

BID 0.0325 0.0256 0.0344 0.0273
(3.97) (3.77) (2.839) (2.542)

sin s(BID) −0.0209 0.0004
−(0.537) (0.011)

cos s(BID) 0.0037 0.0087
(0.069) (0.212)

LEGCR CONST −1.7462 −1.4099 −1.5381 −1.3265
−(10.93) −(15.46) −(7.452) −(10.86)

BID 0.0469 0.0301 0.0283 0.0234
(4.118) (4.682) (1.678) (2.533)

sin s(BID) 0.0460 −0.0069
(0.744) −(0.215)

cos s(BID) −0.1208 −0.0646
−(1.683) −(1.156)

MANTST CONST −1.5757 −1.3729 −1.6911 −1.4134
−(12.15) −(13.97) −(8.562) −(10.77)

BID 0.0334 0.0226 0.0442 0.0264
(3.445) (3.033) (2.823) (2.53)

sin s(BID) −0.0817 −0.0482
(1.634) −(1.382)

cos s(BID) 0.0233 0.0003
(0.361) (0.007)

SMTST CONST −1.4575 −1.3253 −1.4840 −1.3403
−(12.32) −(15.79) −(9.445) −(10.1)

BID 0.0327 0.0239 0.0311 0.0229
(3.661) (3.938) (2.496) (2.21)

sin s(BID) 0.0802 0.0364
(1.726) (.912)

cos s(BID) 0.0339 0.0115
(0.547) (0.238)

Ln L −2511.60 −2099.42 −2505.85 −2106.99

Note: The unrestricted multinomial probit model estimates the correlation between the five practices. The restricted model assumes the cross practice
correlations are zero, and hence, its coefficients and standard errors are the same as in individual standard probit results for each practice. For each practice,
the dependent variable = “1” if the farmer agrees to adopt the practice at the offered bid (cost share), and “0” otherwise.
Random Utility Model = RUM.

regressions predicting current use (first set of
numbers in table A.3) tend to be less signifi-
cant than the correlations between the hypo-
thetical use results. This difference in signif-

icance is to be expected; whether or not the
farmer is a current user of the BMPs is a result
of an evolutionary process, while the hypothet-
ical adoption decisions are made over a bundle
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Figure 1. Probability as a function of the cost share offer

of practices offered to the farmer at one point
in time in a survey instrument.8

Next, given that the restricted correlation
model is not accepted (i.e., the BMP adoption
decisions are not independent across BMPs),
we turn to an evaluation of how the unre-
stricted MVN results can be used for the anal-
ysis of bundling. The basic value of the multi-
variate analysis is that it allows us to calculate
the joint probabilities as a function of the in-
centive payments. Figures 1(a)–(d) provide ex-
amples of how the joint probability changes as
a function of the incentive payment offers for
four of the five BMPs analyzed here, i.e., the
curves represent ∂GC (C1, . . . , CJ )/∂C j calcu-
lated across a wide range of cost share offers.
For example, figure 1(a) plots the probability
of nonacceptance of the conservation tillage
cost share as a function of the cost share offer
amount, given the value of the cost share of-
fers for the other four BMPs. In figure 1(a),
four scenarios (numbers 2–5) with different
fixed offers for BMPs other than CONTILL
are presented. For comparison, scenario 1 is
the predicted probability for the standard uni-
variate normal density function that does not
explicitly account for the other bid offers.

8 An EQIP contract application is submitted at a particular point
in time, when the proposed practices have not yet been adopted.
The farmer is paid per year for each of the practices he agrees to
adopt over the life of the contract.

Given the estimates of the CDFs gener-
ated from the analysis of discrete responses
in the figures, the question that may arise is
how to summarize these distributions of WTA
for practical purposes. In the discrete-choice
contingent valuation (CV) literature, the most
common summary statistic is the mean of the
estimated WTP or WTA distribution. Given
the estimated coefficients from the multivari-
ate probit regression, it is possible to cal-
culate measures of conditional mean WTA.
Hanemann notes that in the case where the
benefit measure CR is restricted to the non-
negative range, its mean value can be found
using the following formula for the mean of a
random variable:

CR =
∫ ∞

0
F(C) dc(9)

where F(C) = F[−�v(s, C, �)] is the cumu-
lative density function for WTP.9,10 Here we
present a new application in which the mean
of the benefit measure for one good is calcu-
lated conditional on the bid offers made for

9 For this article, we are interested in comparisons of E(WTA)
between the scenarios and not what the ideal benefit measure
should be. For a discussion of the pros and cons of various benefit
measures and issues of consistency of the estimated distribution
with the benefit measure, see Hanemann and Kanninen.

10 For WTP, the integral is taken over 1 − F(i), where F(C) =
F[�v(s, C, �)].
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other goods, an application made possible by
the estimation of the multivariate normal CDF.
Given a five-dimensional version of the multi-
variate CDF in equations (3) and (6), one can
take the integral under F with respect to one of
the BMPs, thereby yielding a mean WTA for
that BMP, conditional on the cost share offer
amounts for the other BMPs. For example, for
BMP j = 2 the mean WTA, CR(2), is

CR(2) =
∫ ∞

0
F(2)(A1, C2, A3, A4, A5) dc2.(10)

In other words, equation (10) corresponds to
the area under the curves in figures 1(a)–(d).
Of course, given that a numerical approach
is used to calculate the multivariate CDF, the
mean value must also be calculated numeri-
cally. The lower right-hand corner of each fig-
ure presents the mean WTA values for each
scenario, with the value associated with sce-
nario 1 calculated using equation (9) and the
values associated with scenarios 2 through
5 calculated using appropriate variations of
equation (10).

In figures 1(a)–(d), the probability functions
and mean WTA values differ little for scenar-
ios 1 and 2, with the latter being consistently
lower, although little perhaps can be said of
this comparison as the results are generated
from two different density function assump-
tions. Larger differences tend to occur between
scenario 2 and the other joint-density scenar-
ios (scenarios 3 through 5 in each figure). As
is expected, the lowest minimum WTA in each
figure is associated with scenario 3, the one in
which all the BMPs except the one in question
(e.g., CONTILL in figure 1(a)) are offered at a
cost share of $30 per acre. In other words, given
that adoption of the practices is positively cor-
related (table A.3), one would expect that the
more a farmer is offered to adopt a set of re-
lated practices, the less she will be willing to
accept for the practice in question. Hence, for
comparisons of scenarios 2 through 5, WTA
should be highest under 2 and lowest under
3. This relationship holds for each of the four
figures.

However, what is interesting from the stand-
point of bundling the BMPs is that only one
or two of the BMPs in scenario 3 in each fig-
ure may be driving much of the reduction in
WTA over scenarios 2, 4, and 5. First take fig-
ure 1(a). In this figure, WTA under scenario
4 is not much higher than under scenario 3
even though only two of the other costs are be-
ing offered at nonzero cost shares. In fact, as

shown in table 2, the bundle {CONTILL, IPM,
LEGCR} in scenario 4 is used by 7.37% of
the actual users, while only 0.19% use the bun-
dle {CONTILL, MANTST, SMTST} in sce-
nario 5.11 In figure 1(b), the WTA for IPM in
conjunction with CONTILL and SMTST cost
shares at $30 (scenario 5) was almost as low as
that with the four BMPs being offered at $30
in scenario 3 (scenario 3). For figure 1(c), no
pairs of BMPs offered at $30 in conjunction
with LEGCR seemed to offer the bulk of the
decrease in WTA associated with moving from
scenario 2 to 3. In figure 1(d) however, offer-
ing CONTILL and SMTST at $30 (scenario 5)
yielded a WTA for MANTST almost as low as
that for scenario 3.

Conclusion

This article develops an econometric model
based on the multivariate normal distribution
that identifies producer tendencies to bun-
dle types of management practices that may
be covered under an incentive payment sys-
tem. Identifying producer tendencies to bun-
dle these types of practices may increase adop-
tion and lower the costs of voluntary adoption
programs. Although the scenario examined
here relies on payments to encourage adop-
tion, identifying these producer tendencies can
also lower the government’s costs of volun-
tary adoption programs that rely on the dis-
semination of information to encourage adop-
tion. Since a critical component of voluntary
adoption is producer perceptions, as in the nu-
merical illustration, identifying and packaging
BMPs that are perceived to be jointly bene-
ficial, or bundled, may increase adoption and
lower the costs of the programs. Thus, jointly
modeling the observed adoption data across
the BMPs can indicate which practices should
be bundled into composite practices.

Our model can be used to identify adop-
tion costs in the currently less than ideal situ-
ation facing EQIP (and all similar programs),
where the environmental benefits associated
with BMP adoption are unquantified. How-
ever, research is perhaps moving in the direc-
tion of quantifying (if not monetizing) the en-
vironmental benefits of such practices, e.g., the

11 Further breakdowns of scenario 4 could be used to test whether
IPM or LEGCR are contributing most to reducing WTA from the
level under scenario 2, but are not considered here for the sake of
brevity, given that the target audience for the detailed information
on the bundles are managers of the cost-sharing program, and
perhaps not the general readership of this journal.
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USGS’ Sparrow model may be modified in the
future to measure the impact on sediment and
nutrient loadings in watersheds that are associ-
ated with such practices. Given our estimated
model in conjunction with an environmental
benefits model, benefit-cost trade-offs of BMP
adoption can be assessed.

[Received May 2002;
accepted January 2003.]
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Appendix

Econometric Results for the Analysis of Current Users versus Nonusers of the Best
Management Practices

Table A.1. Definitions of the Explanatory Variables (Mean/Standard Error)

TACRE Total acres operated (1123/2034).
EDUC Formal education of operator (3.194/2.314).
EINDEX Sheet and rill erosion index.
FLVALUE Estimated market value per acre of land (1383/1023).
EXPER Farm operator’s years of experience (24.83/20.15).
BPWORK Number of days annually operator worked off the farm (42.71/99.15).
NETINC Operation’s net farm income in 1991 (24620/26890).
TISTST Tissue test performed in 1992 (dummy) (0.029/0.149).
CTILL Conservation tillage used in 1992 (dummy) (0.174/0.457).
PESTM Destroy crop residues for host free zones (dummy) (0.163/0.355).
ANIMAL Farm type-beef, hogs, sheep (dummy) (0.207/0.522).
ROTATE Grasses and legumes in rotation (dummy) (0.049/0.239).
MANURE Manure applied to field (dummy) (0.147/0.430).
HEL Highly erodible land (dummy) (0.174/0.457).
IA Sample located in the Eastern Iowa or Illinois Basin Area (dummy) (0.729/0.721).
ALBR Sample located in Albermarle-Pamlico Drainage Area (dummy) (0.088/0.209).
IDAHO Sample located in the Upper Snake River Basin Area (dummy) (0.123/0.341).

Table A.2. Multinomial Probit Regression Results Predicting Actual BMP Use/Nonuse (Log-
Likelihood = −2175.86)

Coefficient Estimates
(Coefficient Estimates/Standard Error)

Variables CONTILL IPM LEGCR MANTST SMTST

CONST −0.0005 −0.7960 −0.9896 −1.5657 −0.8799
−(.002) −(3.123) −(2.743) −(2.934) −(1.995)

EDUC −0.0072 0.1713 0.0928 0.0444 0.0158
−(.198) (4.973) (2.838) (.814) (.226)

CTILL 0.3638 – – – –
(3.583)

TISTST – – −0.1174 −1.9290 –
−(.402) −(2.107)

HEL −0.0665 – – – –
−(.536)

EXPER 0.0018 −0.0027 −0.0015 −0.0064 −0.0053
(.489) −(.706) −(.424) −(1.034) −(.736)

PESTM −0.0046 0.3862 – – –
−(.032) (2.998)

ROTATE 0.0442 −0.0041 0.2687 – –
(.196) −(.018) (1.5)

MANURE −0.1153 −0.1821 0.0957 0.3512 –
−(.954) −(1.336) (.828) (2.167)

ANIMAL −0.0074 −0.2869 −0.0071 0.1424 −0.2030
−(.062) −(2.246) −(.068) (.868) −(.86)

TACRE 7.38E-06 5.66E-05 −3.07E-06 −1.85E-05 3.66E-05
(0.235) (1.513) −(0.088) −(0.466) (0.886)

FLVALUE −2.46E-05 5.24E-05 −0.0001 −7.22E-05 −1.86E-05
−(0.31) (0.739) −(1.636) −(0.579) −(0.137)

IA 0.4343 −0.0815 0.8586 0.7698 −0.4328
(2.017) −(0.398) (2.862) (1.792) −(1.498)

ALBR 0.4087 −0.1323 −0.3991 −0.1349 −1.6877
(1.478) −(0.479) −(1.113) −(0.261) −(4.01)

IDAHO 0.2278 −0.3957 0.5796 0.4910 0.2289
(0.917) −(1.667) (1.805) (1.021) (0.795)

BPWORK −0.0002 −0.0003 −0.0008 0.0002 −0.0004
−(0.4) −(0.534) −(1.541) (0.218) −(0.382)

NETINC 1.02E-06 6.21E-07 −3.23E-06 −2.19E-06 7.53E-06
(0.394) (0.286) −(1.524) −(0.655) (1.772)

Note: For each BMP, the dependent variable = “1” if the farmer currently uses the BMP and “0” otherwise.
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Table A.3. Estimates of Correlations Between the BMPs

Practices CONTILL IPM LEGCR MANTST SMTST

Regression Predicting Actual BMP Use/Nonuse
CONTILL –
IPM 0.123 (1.6) –
LEGCR 0.202 (2.7) 0.401 (7.2) –
MANTST 0.0451 (0.4) 0.417 (5.2) 0.531 (6.7) –
SMTST 0.186 (1.8) 0.204 (2.1) 0.124 (1.3) 0.305 (2.7) –

Regression for the Hypothetical Adopters Only—Parametric
CONTILL –
IPM 0.7379 (16.1) –
LEGCR 0.7584 (17.7) 0.8151 (22.4) –
MANTST 0.5295 (7.2) 0.7341 (14.7) 0.8936 (28.1) –
SMTST 0.6052 (9.7) 0.6700 (12.3) 0.7857 (15.1) 0.7649(16.9) –

Regression for the Hypothetical Adopters Only—SNP
CONTILL –
IPM 0.7400 (15.7) –
LEGCR 0.7776 (18.2) 0.8188 (22.5) –
MANTST 0.5545 (7.6) 0.7508 (15.1) 0.8957 (28.3) –
SMTST 0.6120 (9.7) 0.6722 (12.1) 0.7906 (14.8) 0.7749(17.4) –


